Of Invariant Differential Operators to Multivariate Distribution Theory

نویسنده

  • P. Richards
چکیده

The invariant differential operators are applied to derive partial differential equations for the zonal polynomials, to the calculation of generalized binomial coefficients and certain multivariate integrals, and to deducing a characterization of EP functions (Kushner, Lebow and Meisner, J. MUltivariate Anal., 1981).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

Structure Theorems for Linear and Non-linear Differential Operators Admitting Invariant Polynomial Subspaces

In this paper we derive structure theorems that characterize the spaces of linear and non-linear differential operators that preserve finite dimensional subspaces generated by polynomials in one or several variables. By means of the useful concept of deficiency, we can write explicit basis for these spaces of differential operators. In the case of linear operators, these results apply to the th...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Theory of Hybrid Fractional Differential Equations with Complex Order

We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...

متن کامل

2 9 M ar 2 00 7 On conformally invariant differential operators

We construct new families of conformally invariant differential operators acting on densities. We introduce a simple, direct approach which shows that all such operators arise via this construction when the degree is bounded by the dimension. The method relies on a study of well-known transformation laws and on Weyl’s theory regarding identities holding “formally” vs. “by substitution”. We also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008